
Using React & Redux on a

WordPress Site

The contents of this workbook represent a much less complex, but

still very much applicable, version of a project I was asked to

undertake years ago for a client.

There was an old WordPress site which many individuals in the

business were used to using. I needed to add a bunch of additional

functionality but I wasn't allowed to replace much of the WordPress

functionality or change the way the site was deployed.

I found the only way to do this was to essentially build a React /

Redux application on top of the WordPress site so that it looked like

the original design. In reality, there's two or more applications

working together.

This workbook demonstrates the key concepts of what I learned and

how I decided to implement them in the final product, and I look

forward to sharing them with you.

1

This workbook is split into four sections, where each section builds

upon the result of the previous one.

The first and most important one is where you'll learn to add

multiple independent React components to a WordPress

page.

The goal of this is to demonstrate how React can be used to attach

to the existing WordPress content and do additional actions with it

that aren't managed by WordPress or plugins.

Following this, you'll connect all React components on a

WordPress page to a Redux application.

By using Redux in this way, all of the independent React

components will be connected together into a single Redux

application. This is a nontraditional way to use React and Redux

together since lots of the established patterns follow more of the

single-page-app methodology.

Next, you'll learn how to use the Redux application along with

the WordPress REST API.

Connecting to the WordPress REST API will provide the capability to

perform additional actions on WordPress data without having to do

things like refresh the page or integrate WordPress plugins.

Lastly, you'll add functionality to use the Redux application to

asynchronously load WordPress page templates.

This is similar to the previous section, however instead of accessing

the REST API, you're going to be reloading only parts of a page

template, rather than entire pages. Think of this as merging both

the Redux application and WordPress stacks together to essentially

form one large single-page-application.

2

What you'll need

1. WordPress Environment

Since this workbook focuses on integrating React with WordPress,

having access to a WordPress environment is required.

2. Have NodeJS installed

An environment that will be able to build and run Javascript is

necessary for converting React code into something that can run in

a web browser.

3. Text Editor

This can be anything. Vim, Atom, Sublime Text, heck even NotePad.

4. Basic WordPress / React Knowledge

Any familiarity with WordPress and React is encouraged to make

following along with the examples easier, but it's not required.

3

Project Setup

4

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js

Referencing the GitHub Examples

In the following sections, each code snippet or some particular

paragraph might reference a file in the workbook Github repo.

When that happens, a file bar across will appear fixed to the top of

the current workbook page.

This visual aid should help indicate the specific file referenced by

the workbook material or by the complete version of the code

snippet. This is done to provide a guide as progress is made

through the workbook maintaining focus on the specific material

and limiting confusion as much as possible.

Any code snippets relevant to a page in the workbook will display

like this:

function announceToTheWorld() {

 alert('Hello World!')

}

announceToTheWorld()

5

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js

https://github.com/stevus/wordpress-react/tree/main/wordpress-install/wp-content/themes/forcepushed

WordPress Setup

The main thing WordPress needs to manage here is loading (at least

one) Javascript files written later on kbook.

One way to think of it is, WordPress is being used as an application

server to load a psuedo-app on top of the already established

WordPress core page templates.

When all is said and done, WordPress will still function the same

way, only with some additional functionality managed by some

creative Javascript.

To accomplish all of this, all changes will be done in the

functions.php file, preferably at the theme or plugin level.

All of the WordPress examples kbook will be done in a child theme

based on the WordPress TwentyTwenty theme. There are many

reasons to use a child theme, but the purposes of this workbook it

will provide easy access to creating new hooks in the WordPress

lifecycle.

Instead of regurgitating the steps for setting this up, the official

WordPress process is outlined here.

6

https://github.com/stevus/wordpress-react/tree/main/wordpress-install/wp-content/themes/forcepushed
https://developer.wordpress.org/themes/advanced-topics/child-themes/

https://github.com/stevus/wordpress-react/blob/main/package.json

Javascript Project Setup

For the Javascript portion of this workbook, npm will be used to

manage package dependencies. npm is the most common package

manager out there with a very mature and active community.

Please feel free to use other package managers if they are more

familiar to you. The important part of this this stage of the

workbook is to make sure you are able to install the necessary

packages.

If you haven't already, make sure to initialize your project with npm

init. Once that is done, the next step is to install all of the

frameworks and utilities.

The most important of package needed is React and its peer,

ReactDOM.

npm install --save react react-dom

Since nothing in the modern web development world is easy, in

order to run your complex Javascript in a modern browser, it needs

to be bundled into a single file able to be included by the web

browser.

At the end of the Javascript section, all of the Javascript code will

need to be combined into a single file called a bundle. Webpack is

one tool created to handle this process and is what this workbook

will use.

In order to use Webpack, we need to install the core libraries, as

well as some code to be able to call it from the command line:

npm install --save webpack webpack-cli

7

https://github.com/stevus/wordpress-react/blob/main/package.json
https://npm.org/
https://docs.npmjs.com/cli/v8/commands/npm-init
https://webpack.js.org/

Let's Add React to WordPress

8

OK, now to get into the good stuff. It's time to write some Javascript

and PHP code so that we can display React components on our

WordPress site.

First, the dynamic page components will be created using Javascript

and JSX. This will be what looks at the HTML code created by

WordPress and modifies it to add the dynamic experience of what a

single-page-application is normally responsible for.

After that, the necessary PHP code will be added to the WordPress

install. What needs to happen here is WordPress needs to be

configured to serve the new Javascript code written above.

9

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js

Our dynamic React component will change the font color when it

gets clicked. Not super complex but the main goal here is to

demonstrate the process that goes into a design such as this.

The React hook useState is used to store the color that will then be

placed into the style prop of the component itself.

Calling the function getRandomColor will generate a random HEX color

for us when the component initializes and when a click event

occurs.

function getRandomColor() {

 return Math.floor(

 Math.random() * 16777215

).toString(16)

}

import React, { useState } from 'react'

const DynamicPostTitle = (p) => {

 const [color, setColor] = useState(

 getRandomColor()

)

 return (

 <div

 onClick={() => setColor(getRandomColor())}

 style={{ color }}

 >

 {p.children}

 </div>

)

)

10

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js

Our dynamic React component should reuse the existing WordPress

post title, so the target selector must first be found in order for

React to properly "mount" to the DOM.

Using the TwentyTwenty theme, we locate the selector at .entry-

content h2 and use it our code as below.

(Illustrate target)

import ReactDOM from 'react-dom'

...

const component = document.querySelector('.entry-content h2')

if(component !== null) {

 const title = component.innerHTML

 ReactDOM.render(

 <DynamicPostTitle>

 {title}

 </DynamicPostTitle>,

 component

)

}

11

https://github.com/stevus/wordpress-react/blob/main/jsx/index.js
https://twentytwentytheme.com/the-default-template/

https://github.com/stevus/wordpress-react/blob/main/webpack.config.js

With the dynamic React component written, it needs to be included

in WordPress.

For this step, the Javascript code that was written needs to be

bundled into a single file. Once this is exists, the Javascript file can

be referenced in a <script></script> tag in a WordPress template.

Now that all the React code is written, it's time to create the

Javascript bundle that will be loaded by WordPress to include it in

the <head> assets.

With Webpack, I used a super basic webpack.config.js file that I copy-

pasted from the web. Nothing super fancy and gets the job done of

creating a Javascript file that will run on an HTML page.

{

 entry: 'index.js',

 output: {

 path: path.resolve(__dirname, 'js'),

 filename: 'bundle.js'

 }

}

12

https://github.com/stevus/wordpress-react/blob/main/webpack.config.js

https://github.com/stevus/wordpress-react/blob/main/package.json

In npm, a simple build script needs to be added before a command

like this can be executed:.

npm run build

Once that script's added, the script just needs to be ran on the

command line and the Javascript bundle should be saved to where

WordPress can load it.

{

 ...

 "scripts": {

 ...

 "build": "webpack --mode production",

 ...

 },

 ...

}

13

https://github.com/stevus/wordpress-react/blob/main/package.json

https://github.com/stevus/wordpress-react/blob/main/wordpress-install/wp-content/themes/forcepushed/functions.php

In order for our React / Redux code to run, we need to tell

WordPress to load it how to find our Javascript file so it can be

included in the page DOM.

We'll accomplish through the usage of the WordPress actions and

the wp_enqueue_script function.

All this code does is utilize WordPress to include our Javascript

bundle and place a <script> tag on any WordPress page in the

theme.

// Execute the `workbook_add_js` function on the `wp_head` WordPress `wp_hea

add_action('wp_head', 'workbook_add_js');

//

function workbook_add_js() {

 wp_enqueue_script(

 'workbook_js_bundle',

 get_template_directory_uri() . '/js/bundle.js',

 array(),

 '1.0.0',

 true

);

}

14

https://github.com/stevus/wordpress-react/blob/main/wordpress-install/wp-content/themes/forcepushed/functions.php
https://developer.wordpress.org/plugins/hooks/actions/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/

OK so let's recap:

1. Dynamic React component created

2. Javascript bundle file created

3. WordPress Javascript asset included in the page template

We should have all of the things necessary to show the new

dynamic component in action in WordPress!

Let's load up the browser...

(image of browser)

15

Connect React Components with Redux

16

Let's take this a step further and add multiple React components

that can communicate with each other. In order for this to be

possible, we need to introduce Redux.

Since our WordPress site is served by Apache, the DOM isn't

something that our React app can directly control. With Redux, we

can attach a store and an application context to every React

component. This is going to allow us to handle actions one

component to affect what happens on a different one.

We're also going to expand outside just one page, and support

multiple pages on our WordPress site.

17

The steps to take to create this application are the following:

1. Create a Redux Provider

With the knowledge of how Redux works, a provider will be created

to link multiple React components together and allow them to

communicate with each other.

2. Update Blog Index page

Once the Redux application is created, all of the summarized blog

posts on the index page can now be controlled by React.

3. Update Blog Post page

With all of the work done in the previous steps, some small tweaks

to the existing blog post page implementation will connect this

React component to the Redux application.

18

https://github.com/stevus/wordpress-react-redux/blob/main/package.json

An initial setup task is to update the npm package dependencies to

include the Redux library. Using npm, it's installed into the project

using the following command:

npm install --save redux@4.0.2

19

https://github.com/stevus/wordpress-react-redux/blob/main/package.json

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

We'll also need to tweak out DynamicPostTitle component for it to

be able to communicate.

First, some basic imports are added to bring in some Redux

functionality, both as part of the Redux library itself and some

custom that will be written later on.

Lastly, the export identifier is changed to connect the component to

a Redux Container and attach it to a Redux reducer.

import { connect } from 'react-redux'

import * as Actions from 'redux-actions'

const mapStateToProps = (state) => {

 return state

}

export default connect(mapStateToProps)(DynamicPostTitle)

20

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

We'll also make the component much "dumber" and have it just

take information from the reducer. We'll keep the getRandomColor

function where it is but change how the click event handler works.

The React lifecycle management code can go away since the

reducer is managing this for us.

Once our changes are done, the guts of the DynamicPostTitle

component look like this:

import Actions from '../redux/Actions'

const DynamicPostTitle = (p) => (

 <div

 onClick={() => p.dispatch(

 Actions.setColor(getRandomColor())

)}

 style={{ color: p.color }}

 >

 {p.children}

 </div>

)

21

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

https://github.com/stevus/wordpress-react-redux/blob/main/redux/Actions.js

Only a single Redux action is used in this example, and this is the

file that's referenced the updated React component.

This action will be used by the React component to trigger an event

to be recorded in the Redux reducer which will update the color.

The Redux action type could be extracted to a constant, however

for the purposes of this example it's not necessary.

export const setColor = (color) => ({

 color,

 type: 'SET_COLOR'

})

22

https://github.com/stevus/wordpress-react-redux/blob/main/redux/Actions.js

https://github.com/stevus/wordpress-react-redux/blob/main/redux/Reducer.js

Now that the we've updated our component and created the Redux

action, the only remaining thing to do is create the reducer to

manage the state of the current font color.

We'll create a file which contains our store, and implements our

reducer.

import { createStore } from 'redux'

export const reducer = (state, action) => {

 if(action.type === 'SET_COLOR') {

 return {

 color: action.color

 ...state,

 }

 }

 return {

 ...state

 }

}

const store = createStore(reducer, {

 color: '#000000'

})

export default store

23

https://github.com/stevus/wordpress-react-redux/blob/main/redux/Reducer.js

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

Lastly, we're going to modify our entry point file and add our new

Redux store along with some other basic Redux code to complete

the application changes.

To do this we need to import some new packages and variables

from our new Redux files:

Notice the DynamicPostTitle component is being wrapped in a Redux

Provider. This essentially "provides" the Redux context to any

children React components alongside any other props already being

passed to the component.

import { Provider } from 'react-redux'

import store from 'redux-store'

const components = docuement.querySelectorAll()

for (let i = 0; i < components.length; i++) {

 const title = component.innerHTML

 ReactDOM.render(

 <Provider store={store}>

 <DynamicPostTitle>

 {title}

 </DynamicPostTitle>

 </Provider>,

 component

)

}

24

https://github.com/stevus/wordpress-react-redux/blob/main/jsx/index.js

With these changes, complete, it's time to rebuild everything and

watch it work.

You should be able to click any post title and observe all of them

change color at the same time.

(preview interaction)

25

Integrating WordPress REST API into Redux

26

COMING SOON

27

Rendering partial WordPress templates with Redux

28

COMING SOON

29

